We consider the problem of segmenting cell nuclei instances from Hematoxylin and Eosin (H&E) stains with dot annotations only. While most recent works focus on improving the segmentation quality, this is usually insufficient for instance segmentation of cell instances clustered together or with a small size. In this work, we propose a simple two-step post-processing procedure, Split and Expand, that directly improves the conversion of segmentation maps to instances. In the splitting step, we generate fine-grained cell instances from the segmentation map with the guidance of cell-center predictions. For the expansion step, we utilize Layer-wise Relevance Propagation (LRP) explanation results to add small cells that are not captured in the segmentation map. Although we additionally train an output head to predict cell-centers, the post-processing procedure itself is not explicitly trained and is executed at inference-time only. A feature re-weighting loss based on LRP is proposed to improve our method even further. We test our procedure on the MoNuSeg and TNBC datasets and show quantitatively and qualitatively that our proposed method improves object-level metrics substantially.


翻译:我们只考虑Hematoxylin 和 Eosin (H&E) 的细胞核质分解问题。 虽然最近的工作侧重于改善分解质量, 但通常不够充分, 比如将细胞的分解组合在一起或体积较小。 在这项工作中, 我们提议一个简单的两步后处理程序, 即分解和扩大, 直接改进分解图转换为实例。 在分解步骤中, 我们用细胞中心预测的指导, 从分解图中生成细分解的细胞例。 在扩展步骤中, 我们使用图层与相关性促进(LRP) 的解释结果来添加分解图中未捕捉到的小细胞。 虽然我们额外训练了输出头来预测细胞中心, 但后处理程序本身没有经过明确培训,并且只在推断时间内执行。 根据 LRP 提出的特征重新加权损失来进一步改进我们的方法。 我们用MNuSeg 和 TNBC 数据集来测试我们的程序, 并显示我们拟议的定量和定性方法。

1
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
73+阅读 · 2020年4月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
Arxiv
8+阅读 · 2021年6月1日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
73+阅读 · 2020年4月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
Top
微信扫码咨询专知VIP会员