Recent years have seen substantial advances in the development of biofunctional materials using synthetic polymers. The growing problem of elusive sequence-functionality relations for most biomaterials has driven researchers to seek more effective tools and analysis methods. In this study, statistical models are used to study sequence features of the recently reported random heteropolymers (RHP), which transport protons across lipid bilayers selectively and rapidly like natural proton channels. We utilized the probabilistic graphical model framework and developed a generalized hidden semi-Markov model (GHSMM-RHP) to extract the function-determining sequence features, including the transmembrane segments within a chain and the sequence heterogeneity among different chains. We developed stochastic variational methods for efficient inference on parameter estimation and predictions, and empirically studied their computational performance from a comparative perspective on Bayesian (i.e., stochastic variational Bayes) versus frequentist (i.e., stochastic variational expectation-maximization) frameworks that have been studied separately before. The real data results agree well with the laboratory experiments, and suggest GHSMM-RHP's potential in predicting protein-like behavior at the polymer-chain level.


翻译:近年来,在利用合成聚合物开发生物功能材料方面取得了长足进步,大多数生物材料的难测序列-功能关系问题日益严重,促使研究人员寻找更有效的工具和分析方法,在这项研究中,统计模型用于研究最近报告的随机异质聚合物(RHP)的序列特征,这些异质聚合物有选择地、迅速地将质子传送到脂性双层之间,与天然质子渠道相似。我们利用概率图形模型框架,开发了一个普遍隐蔽的半马尔科夫模型(GHMSMM-RHP),以提取功能确定序列特征,包括链中转模组和不同链中的序列异质性。我们开发了随机变异方法,以便有效地推断参数估计和预测,并用实验方法从拜斯河(即沙变波波湾)相对的角度,与以前分别研究过的经常(即随机变异性预期-质化)框架相比,我们开发了一种通用的半随机变异性模型(GHMRMA-RMA-MIS-MIS-MIS-MIS-MIS-MIS-MIS-MIS-MISMIS-MIS-MIS-MIS-MIS-ILA-MIS-MIS-MIS-MIS-MIS-MIS-ILVOL-ILA-MIS-MIS-MIS-MIS-MIS-S-S-S-MIS-MIS-MIS-MIS-MIS-MIS-MIS-MIS-MIS-MIS-I 的预测法,实际数据性能与MIS-MIS-MIS-MIS-MIS-MIS-MIS-MIS-MIS-MIS-MIS-S-S-MIS-MIS-S-S-S-S-I-I-I-I-I-SDAR-SDMIS-MAR-SDMISMISMISMISMAR-MAR-MAR-SDMAR-I-I-S-S-I-I-I-S-S-S-I-I-I-I-S-MIS-S-S-S-S-S-MIS-S-S-S-I-I-I-

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员