We propose simple estimators for mediation analysis and dynamic treatment effects over short horizons, which preserve the nonlinearity, dependence, and effect modification of identification theory. We allow treatments, mediators, and covariates to be discrete or continuous in general spaces. Across this broad variety of data settings, the estimators have closed form solutions in terms of kernel matrix operations due to our algorithmic innovation: sequential mean embedding of the mediator and covariate conditional distributions given a hypothetical treatment sequence. The simple estimators have strong guarantees. For the continuous treatment case, we prove uniform consistency with finite sample rates that match the minimax optimal rate for standard kernel ridge regression. For the discrete treatment case, we prove $n^{-1/2}$ consistency, finite sample Gaussian approximation, and semiparametric efficiency. We extend the analysis to incremental effects and counterfactual distributions, identifying and estimating new causal estimands. In nonlinear simulations with many covariates, we demonstrate state-of-the-art performance. We estimate mediated and dynamic treatment effects of the US Job Corps program for disadvantaged youth, and share a cleaned data set that may serve as a benchmark in future work.


翻译:我们提出短期调解分析和动态处理效果的简单估计值,以保持识别理论的非线性、依赖性和效果的修改。我们允许治疗、调停和共变在一般空间中是离散的或连续的。在数据设置的这一广泛多样性中,由于我们的算法创新,估计值在内核矩阵操作方面有封闭式的解决办法:按顺序平均嵌入调解人,根据假设的治疗顺序确定共同有条件分布。简单估计值有强有力的保证。对于持续治疗案例,我们证明与符合标准内核脊脊回归最低最佳比率的有限抽样率一致。对于离散治疗案例,我们证明美元/升/升/2美元的一致性、有限的抽样高斯近似值和半偏差效率。我们把分析扩大到递增效应和反事实分布,确定和估计新的因果关系估计值。在与许多同级的非线性模拟中,我们展示了最新的业绩。我们估计了美国职业团未来工作基准项目中的介质和动态处理效果,为劣势青年提供清洁的数据。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月1日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员