We propose a novel ensemble method called Riemann-Lebesgue Forest (RLF) for regression. The core idea of RLF is to mimic the way how a measurable function can be approximated by partitioning its range into a few intervals. With this idea in mind, we develop a new tree learner named Riemann-Lebesgue Tree which has a chance to split the node from response $Y$ or a direction in feature space $\mathbf{X}$ at each non-terminal node. We generalize the asymptotic performance of RLF under different parameter settings mainly through Hoeffding decomposition \cite{Vaart} and Stein's method \cite{Chen2010NormalAB}. When the underlying function $Y=f(\mathbf{X})$ follows an additive regression model, RLF is consistent with the argument from \cite{Scornet2014ConsistencyOR}. The competitive performance of RLF against original random forest \cite{Breiman2001RandomF} is demonstrated by experiments in simulation data and real world datasets.
翻译:暂无翻译