We present two new local differentially private algorithms for frequency estimation. One solves the fundamental frequency oracle problem; the other solves the well-known heavy hitters identification problem. Consistent with prior art, these are randomized algorithms. As a function of failure probability~$\beta$, the former achieves optimal worst-case estimation error for every~$\beta$, while the latter is optimal when~$\beta$ is at least inverse polynomial in~$n$, the number of users. In both algorithms, server running time is~$\tilde{O}(n)$ while user running time is~$\tilde{O}(1)$. Our frequency-oracle algorithm achieves lower estimation error than the prior works of Bassily et al. (NeurIPS 2017). On the other hand, our heavy hitters identification method is as easily implementable as as TreeHist (Bassily et al., 2017) and has superior worst-case error, by a factor of $\Omega(\sqrt{\log n})$.
翻译:我们为频率估测提出了两种新的本地差异私人算法。 一个解决了基本的频率或触摸器问题; 另一个解决了已知的重击手识别问题。 与先前的艺术一致, 这些是随机的算法。 作为失败概率~$\beta$的函数, 前者为每~ $\beta$实现最佳最坏的估测错误, 而后者是最佳的, 当$~\beta$至少为 ~ 美元( 美元) 用户数量为 ~ 美元( 美元) 时, 后者是最佳的。 在这两种算法中, 服务器运行的时间是~ $\ tilde{ O} (n) 美元, 而用户运行的时间是~ $\ tilde{O}(1)$。 我们的频率- 算法的估测错误比 Bassily et al. ( NeurIPS 201717) 之前的作品( NeurIPS ) 。 另一方面, 我们的重击击手识别方法可以像 TreeHist (Bassily et al, 2017) 那样容易执行, 和最坏的误差一个 。