In this work, we consider multigoal-oriented error estimation for stationary fluid-structure interaction. The problem is formulated within a variational-monolithic setting using arbitrary Lagrangian-Eulerian coordinates. Employing the dual-weighted residual method for goal-oriented a posteriori error estimation, adjoint sensitivities are required. For multigoal-oriented error estimation, a combined functional is formulated such that several quantities of interest are controlled simultaneously. As localization technique for mesh refinement we employ a partition-of-unity. Our algorithmic developments are substantiated with several numerical tests such as an elastic lid-driven cavity with two goal functionals, an elastic bar in a chamber with two goal functionals, and the FSI-1 benchmark with three goal functionals.
翻译:在这项工作中,我们考虑对固定流体结构互动进行多目标方向错误估计。 问题是在一个变异- 单体环境里用任意的Lagrangian- Eulerian坐标来拟订的。 使用双加权残余方法对目标方向进行事后误差估计, 需要结合敏感性。 对于多目标方向误差估计, 组合功能可以同时控制若干数量的利害关系。 随着用于精细网格的本地化技术, 我们采用了一种分治方法。 我们的算法发展得到了一些数字测试的证实, 比如有两种目标功能的弹性利柱驱动的洞口, 一种是具有两个目标功能的室内弹性体, 一种具有两个目标功能的室内弹性体, 以及有三个目标功能的FSI-1基准。