State-of-the-art methods for large-scale driving-scene LiDAR segmentation often project the point clouds to 2D space and then process them via 2D convolution. Although this corporation shows the competitiveness in the point cloud, it inevitably alters and abandons the 3D topology and geometric relations. A natural remedy is to utilize the3D voxelization and 3D convolution network. However, we found that in the outdoor point cloud, the improvement obtained in this way is quite limited. An important reason is the property of the outdoor point cloud, namely sparsity and varying density. Motivated by this investigation, we propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pat-tern while maintaining these inherent properties. Moreover, a point-wise refinement module is introduced to alleviate the interference of lossy voxel-based label encoding. We evaluate the proposed model on two large-scale datasets, i.e., SemanticKITTI and nuScenes. Our method achieves the 1st place in the leaderboard of SemanticKITTI and outperforms existing methods on nuScenes with a noticeable margin, about 4%. Furthermore, the proposed 3D framework also generalizes well to LiDAR panoptic segmentation and LiDAR 3D detection.
翻译:大型驱动器- 磁共分解的状态方法LIDAR 分解方法通常将点云投射为 2D 空间, 然后通过 2D 演化处理 。 虽然这家公司展示了点云的竞争力, 但它不可避免地改变和抛弃了 3D 的地形和几何关系 。 一个自然的补救措施是使用 3D 陶瓷化和 3D 进化网络 。 然而, 我们发现在户外点云中, 以这种方式取得的改进非常有限 。 一个重要的原因是户外点云的特性, 即 宽度和密度不一 。 受这次调查的驱动, 我们提出了一个新的室外线分割框架框架, 在那里, 圆际分割和对称 3D 的 3D 进化网络 。 此外, 我们的方法在维护这些固有特性的同时探索 3D 3ARD 的3D 边际框架 的1D 。 我们还评估了两个大型数据集的拟议模型的特性模型 。 关于 SmantictKITTI 和 Senstecenard 3D, 我们的方法在普通框架 4 和S 的显著框架 上达到了一个位置 。