Hitting formulas have been studied in many different contexts at least since [Iwama,89]. A hitting formula is a set of Boolean clauses such that any two of them cannot be simultaneously falsified. [Peitl,Szeider,05] conjectured that hitting formulas should contain the hardest formulas for resolution. They supported their conjecture with experimental findings. Using the fact that hitting formulas are easy to check for satisfiability we use them to build a static proof system Hitting: a refutation of a CNF in Hitting is an unsatisfiable hitting formula such that each of its clauses is a weakening of a clause of the refuted CNF. Comparing this system to resolution and other proof systems is equivalent to studying the hardness of hitting formulas. We show that tree-like resolution and Hitting are quasi-polynomially separated. We prove that Hitting is quasi-polynomially simulated by tree-like resolution, thus hitting formulas cannot be exponentially hard for resolution, so Peitl-Szeider's conjecture is partially refuted. Nevertheless Hitting is surprisingly difficult to polynomially simulate. Using the ideas of PIT for noncommutative circuits [Raz-Shpilka,05] we show that Hitting is simulated by Extended Frege. As a byproduct, we show that a number of static (semi)algebraic systems are verifiable in a deterministic polynomial time. We consider multiple extensions of Hitting. Hitting(+) formulas are conjunctions of clauses containing affine equations instead of just literals, and every assignment falsifies at most one clause. The resulting system is related to Res(+) proof system for which no superpolynomial lower bounds are known: Hitting(+) simulates the tree-like version of Res(+) and is at least quasi-polynomially stronger. We show an exponential lower bound for Hitting(+).


翻译:至少在[ Iwama, 89] 之后, 对许多不同背景下的命中公式进行了研究。 击中公式是一套不满意的直方公式, 以至于其中任何两个条款都不能同时伪造。 [Peitl, Szeider, 05] 推测击中公式应该包含最难解析的公式。 他们用实验性发现来支持其推测。 使用点击公式很容易检查是否具有可视性这一事实, 我们使用它们来建立一个静态验证系统 命中: 击中一个CNF是一个无法令人满意的直方公式。 因此, 它的每一个条款都会削弱被否定的 CNFUF。 将这个系统与解中的其他验证系统与对调中最难的公式。 我们用像树一样的分辨率来模拟它, 击中最接近的公式不能为解析, 因此Peitl- servicial 的直方程式会削弱它。 将Slickral 规则部分地用来推翻Slick- hill- hillations, 显示一个不具有可理解性规则。

0
下载
关闭预览

相关内容

简称 哈工大,创建于1920年,是C9联盟成员之一,国内工科顶尖高校。1999年成为首批九所985工程院校之一,校训是“规格严格,功夫到家”。
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
29+阅读 · 2021年11月2日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员