Many applications such as forensics, surveillance, satellite imaging, medical imaging, etc., demand High-Resolution (HR) images. However, obtaining an HR image is not always possible due to the limitations of optical sensors and their costs. An alternative solution called Single Image Super-Resolution (SISR) is a software-driven approach that aims to take a Low-Resolution (LR) image and obtain the HR image. Most supervised SISR solutions use ground truth HR image as a target and do not include the information provided in the LR image, which could be valuable. In this work, we introduce Triplet Loss-based Generative Adversarial Network hereafter referred as SRTGAN for Image Super-Resolution problem on real-world degradation. We introduce a new triplet-based adversarial loss function that exploits the information provided in the LR image by using it as a negative sample. Allowing the patch-based discriminator with access to both HR and LR images optimizes to better differentiate between HR and LR images; hence, improving the adversary. Further, we propose to fuse the adversarial loss, content loss, perceptual loss, and quality loss to obtain Super-Resolution (SR) image with high perceptual fidelity. We validate the superior performance of the proposed method over the other existing methods on the RealSR dataset in terms of quantitative and qualitative metrics.


翻译:许多应用软件,如法证、监视、卫星成像、医学成像等,都要求高分辨率图像。然而,由于光学传感器的局限性及其成本,获取HR图像并非总有可能。一种名为单一图像超级分辨率(SISR)的替代解决方案是一种软件驱动的方法,目的是将低分辨率图像(LR)作为软件驱动的方法,并获得HR图像。大多数受监督的SISR解决方案将地面真象HR图像作为目标,而不包括LR图像中可能有价值的信息。在这项工作中,我们引入了基于Tripl Levle Leving General Adversarial网络(以下简称图像超分辨率超分辨率问题SRTGAN),在真实世界的退化问题上,我们引入了一个新的基于三重基对抗性对抗性损失功能,即利用LR图像中提供的信息,将其作为负面样本。允许基于补基的歧视者最佳地获取HR和LR图像,以更好地区分HR和LR图像;因此,改进对手。此外,我们提议将对抗性损失、内容损失、感官损失和质量损失与现实世界的高级标准验证方法相结合。我们提议采用目前关于SSR的高级标准。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
11+阅读 · 2019年4月15日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员