Cataloging the complex behaviors of dynamical systems can be challenging, even when they are well-described by a simple mechanistic model. If such a system is of limited analytical tractability, brute force simulation is often the only resort. We present an alternative, optimization-driven approach using tools from machine learning. We apply this approach to a novel, fully-optimizable, reaction-diffusion model which incorporates complex chemical reaction networks (termed "Dense Reaction-Diffusion Network" or "Dense RDN"). This allows us to systematically identify new states and behaviors, including pattern formation, dissipation-maximizing nonequilibrium states, and replication-like dynamical structures.
翻译:对动态系统的复杂行为进行分类可能具有挑战性,即使它们被简单的机械模型很好地描述。如果这种系统的分析可感性有限,那么布鲁特力模拟往往是唯一的办法。我们提出一种利用机器学习工具的替代、优化驱动的方法。我们将这种方法应用到一个包含复杂化学反应网络的新颖的、完全可实现的、反应扩散模型(称为“常温反应-扩散网络 ” 或“常温RDN ” ) 。 这使我们能够系统地识别新的状态和行为,包括模式形成、消散-最大化无平衡状态以及类似复制的动态结构。