West Greenlandic, known by native speakers as Kalaallisut, is an extremely low-resource polysynthetic language spoken by around 56,000 people in Greenland. Here, we attempt to finetune a pretrained Kalaallisut-to-English neural machine translation (NMT) system using web-crawled pseudoparallel sentences from around 30 multilingual websites. We compile a corpus of over 93,000 Kalaallisut sentences and over 140,000 Danish sentences, then use cross-lingual sentence embeddings and approximate nearest-neighbors search in an attempt to mine near-translations from these corpora. Finally, we translate the Danish sentence to English to obtain a synthetic Kalaallisut-English aligned corpus. Although the resulting dataset is too small and noisy to improve the pretrained MT model, we believe that with additional resources, we could construct a better pseudoparallel corpus and achieve more promising results on MT. We also note other possible uses of the monolingual Kalaallisut data and discuss directions for future work. We make the code and data for our experiments publicly available.
翻译:西格陵兰语,当地人以Kalaallisut著称,是格陵兰近56 000人所讲的一种极低资源的综合合成语言。在这里,我们试图利用大约30个多语种网站的网络拼图伪平行句子,微调一个经过训练的Kalaallisuut到英语神经机翻译系统(NMT)。我们汇编了一套超过93 000个Kalaallisuut判决和140 000个丹麦判决的汇编,然后使用跨语言嵌入的句子和近邻搜索器,试图从这些公司中近似翻译。最后,我们将丹麦语的句子翻译成英语,以获得合成的Kalaallisuut-英语配套材料。尽管由此产生的数据集太小,太吵,无法改进经过训练的MT模型,但我们认为,如果有更多的资源,我们可以建立一个更好的假的假的文体,并在MT上取得更有希望的结果。我们还注意到单语的Kalaallisuut数据的其他可能用途,并讨论未来工作方向。我们公开提供我们的实验的代码和数据。