Deep learning-based segmentation methods are vulnerable to unforeseen data distribution shifts during deployment, e.g. change of image appearances or contrasts caused by different scanners, unexpected imaging artifacts etc. In this paper, we present a cooperative framework for training image segmentation models and a latent space augmentation method for generating hard examples. Both contributions improve model generalization and robustness with limited data. The cooperative training framework consists of a fast-thinking network (FTN) and a slow-thinking network (STN). The FTN learns decoupled image features and shape features for image reconstruction and segmentation tasks. The STN learns shape priors for segmentation correction and refinement. The two networks are trained in a cooperative manner. The latent space augmentation generates challenging examples for training by masking the decoupled latent space in both channel-wise and spatial-wise manners. We performed extensive experiments on public cardiac imaging datasets. Using only 10 subjects from a single site for training, we demonstrated improved cross-site segmentation performance and increased robustness against various unforeseen imaging artifacts compared to strong baseline methods. Particularly, cooperative training with latent space data augmentation yields 15% improvement in terms of average Dice score when compared to a standard training method.
翻译:在部署期间,深层学习式的分解方法很容易受到无法预见的数据分布变化的影响,例如由不同扫描仪、意外成像文物等引起的图像外观或对比变化。在本文件中,我们为培训图像分解模型和生成硬实例的潜在空间增强方法提供了一个合作框架。两种贡献都用有限的数据改进了模型的概括性和稳健性。合作培训框架包括快速思维网络(FTN)和慢思维网络(STN)。FTN学习了图像重建和分解和分化任务所需的图像分解特征和形状特征。STN学习了分解纠正和完善的前期。两个网络都以合作方式接受培训。潜在空间增强为培训提供了具有挑战性的例子,通过在通道和空间方面的方式遮盖分解的潜在空间。我们在公共心脏成像数据集方面进行了广泛的实验。我们仅利用一个网站的10个科目进行培训,我们展示了跨场分解性表现,并针对各种不可预见的成像制品的强度,而不是强大的基线方法。特别是,在平均D标准比空间数据递增率达到15%的情况下,合作性培训得出了15%的标准。