Due to the curse of dimensionality, solving high dimensional parabolic partial differential equations (PDEs) has been a challenging problem for decades. Recently, a weak adversarial network (WAN) proposed in (Y.Zang et al., 2020) offered a flexible and computationally efficient approach to tackle this problem defined on arbitrary domains by leveraging the weak solution. WAN reformulates the PDE problem as a generative adversarial network, where the weak solution (primal network) and the test function (adversarial network) are parameterized by the multi-layer deep neural networks (DNNs). However, it is not yet clear whether DNNs are the most effective model for the parabolic PDE solutions as they do not take into account the fundamentally different roles played by time and spatial variables in the solution. To reinforce the difference, we design a novel so-called XNODE model for the primal network, which is built on the neural ODE (NODE) model with additional spatial dependency to incorporate the a priori information of the PDEs and serve as a universal and effective approximation to the solution. The proposed hybrid method (XNODE-WAN), by integrating the XNODE model within the WAN framework, leads to significant improvement in the performance and efficiency of training. Numerical results show that our method can reduce the training time to a fraction of that of the WAN model.


翻译:由于维度的诅咒,解决高维的抛物线部分偏差方程式(PDEs)几十年来一直是一个具有挑战性的问题。最近,(Y.Zang等人,2020年)中提议的弱对抗性网络(WAN)提供了一种灵活和计算高效的方法,通过利用薄弱的解决方案来解决在任意领域界定的这一问题。广域网将PDE问题改造成一种基因化的对抗性网络,其中薄弱的解决方案(初级网络)和测试功能(对抗性网络)由多层深神经网络(DNNSs)作为参数。然而,尚不清楚DNNNN是否是PDE解决方案最有效的模式,因为它们没有考虑到时间和空间变量在解决方案中所起的根本性不同作用。为了加强差异,我们为原始网络设计了一个新型的所谓XNODE模型,该模型建在神经内有额外的空间依赖性模型,以纳入PDEs的先前信息,并作为与解决方案的普遍和有效近似性近似模式。拟议的MINNDES(X-RODER)方法通过将NPRA的显著的改进结果纳入X培训框架,可以将NMO-RO-RODA的进度推向NWAS-ROPA的进度框架。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月6日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员