This paper focuses on obtaining a posteriori error estimates for mixed-dimensional elliptic equations exhibiting a hierarchical structure. We derive general abstract estimates based on the theory of functional a posteriori error estimates, for which guaranteed upper bounds for the primal and dual variables and two-sided bounds for the primal-dual pair are obtained. However, unlike standard results obtained with the functional approach, we propose four different ways of estimating the residual errors based on the level of accuracy available for their approximations, i.e.: (1) no conservation, (2) subdomain conservation, (3) local conservation, and (4) exact conservation. This treatment results in sharper and fully computable estimates when mass is conserved either locally or exactly, with a comparable structure to those obtained from grid-based a posteriori techniques. We demonstrate the practical effectiveness of our theoretical results through numerical experiments using four different discretization methods on matching and nonmatching grids for synthetic problems and benchmarks of flow in fractured porous media.
翻译:本文侧重于获得对具有等级结构的多维椭圆方程式的事后误差估计,我们根据功能性事后误差估计理论得出一般性抽象估计,为原始和双重变量提供保障,为原始和双重变量提供双向界限,为原始-双向对等提供双向界限;然而,与功能方法的标准结果不同,我们建议了四种不同的方法,根据近似点的准确度,即(1) 不保护,(2) 亚杜尔面保护,(3) 地方保护,(4) 准确保护,根据功能性事后误差估计得出一般抽象估计。当质量在当地或精确保存时,这种处理得出更清晰和完全可计算的估计,其结构与基于网格的远端技术具有可比性。我们通过使用四种不同的分离方法,即对合成问题的网格进行匹配和非匹配,以及断裂多孔式媒体的流动基准,通过数字实验,表明我们的理论结果的实际效果。