In the e-commerce domain, the accurate extraction of attribute-value pairs from product listings (e.g., Brand: Apple) is crucial for enhancing search and recommendation systems. The automation of this extraction process is challenging due to the vast diversity of product categories and their respective attributes, compounded by the lack of extensive, accurately annotated training datasets and the demand for low latency to meet the real-time needs of e-commerce platforms. To address these challenges, we introduce GenToC, a novel two-stage model for extracting attribute-value pairs from product titles. GenToC is designed to train with partially-labeled data, leveraging incomplete attribute-value pairs and obviating the need for a fully annotated dataset. Moreover, we introduce a bootstrapping method that enables GenToC to progressively refine and expand its training dataset. This enhancement substantially improves the quality of data available for training other neural network models that are typically faster but are inherently less capable than GenToC in terms of their capacity to handle partially-labeled data. By supplying an enriched dataset for training, GenToC significantly advances the performance of these alternative models, making them more suitable for real-time deployment. Our results highlight the unique capability of GenToC to learn from a limited set of labeled data and to contribute to the training of more efficient models, marking a significant leap forward in the automated extraction of attribute-value pairs from product titles. GenToC has been successfully integrated into India's largest B2B e-commerce platform, IndiaMART.com, achieving a significant increase of 21.1% in recall over the existing deployed system while maintaining a high precision of 89.5% in this challenging task.
翻译:暂无翻译