Background and Objective: Wilson statistics describe well the power spectrum of proteins at high frequencies. Therefore, it has found several applications in structural biology, e.g., it is the basis for sharpening steps used in cryogenic electron microscopy (cryo-EM). A recent paper gave the first rigorous proof of Wilson statistics based on a formalism of Wilson's original argument. This new analysis also leads to statistical estimates of the scattering potential of proteins that reveal a correlation between neighboring Fourier coefficients. Here we exploit these estimates to craft a novel prior that can be used for Bayesian inference of molecular structures. Methods: We describe the properties of the prior and the computation of its hyperparameters. We then evaluate the prior on two synthetic linear inverse problems, and compare against a popular prior in cryo-EM reconstruction at a range of SNRs. Results: We show that the new prior effectively suppresses noise and fills-in low SNR regions in the spectral domain. Furthermore, it improves the resolution of estimates on the problems considered for a wide range of SNR and produces Fourier Shell Correlation curves that are insensitive to masking effects. Conclusions: We analyze the assumptions in the model, discuss relations to other regularization strategies, and postulate on potential implications for structure determination in cryo-EM.
翻译:背景和目标:威尔逊统计数据很好地描述了高频率蛋白质的能量频谱。 因此,它发现在结构生物学中有若干应用,例如,它是强化低温电子显微镜(cryo-EM)所用步骤的基础。最近一份论文根据威尔逊最初论点的形式主义,首次有力地证明了威尔逊统计数据。这一新的分析还导致对蛋白质分散潜力的统计估计,这些潜力揭示了相邻Fourier系数之间的相互关系。我们在这里利用这些估计来设计出一个新的预想,用于Bayesian推断分子结构。方法:我们描述前两个合成线性反问题的特点和计算其超光谱仪的特性。然后我们评估前两个合成线性反问题,比较了在一系列SRIS进行热电解重建时流行的流行数据。结果:我们展示了以前新的有效抑制噪音和填补光谱域中低的SNR系数区域的分散潜力。此外,我们利用这些估计数改进了为广泛的SNR所考虑的问题的估计数的解决方案的解决方案的解决方式,并制作了4ier Shelation模型。我们接着评估了两个合成线性线性反问题的分析结论。