Judging the quality of samples synthesized by generative models can be tedious and time consuming, especially for complex data structures, such as point clouds. This paper presents a novel approach to quantify the realism of local regions in LiDAR point clouds. Relevant features are learned from real-world and synthetic point clouds by training on a proxy classification task. Inspired by fair networks, we use an adversarial technique to discourage the encoding of dataset-specific information. The resulting metric can assign a quality score to samples without requiring any task specific annotations. In a series of experiments, we confirm the soundness of our metric by applying it in controllable task setups and on unseen data. Additional experiments show reliable interpolation capabilities of the metric between data with varying degree of realism. As one important application, we demonstrate how the local realism score can be used for anomaly detection in point clouds.
翻译:通过基因模型合成的样品质量的判断可能既乏味又费时,特别是对于诸如点云等复杂数据结构而言,特别是对于点云等复杂数据结构,本文件提出了量化LiDAR点云中地方区域真实性的新办法。通过对代理分类任务的培训,从现实世界和合成点云中学习了相关特征。在公平网络的启发下,我们使用对抗技术来阻止特定数据集信息的编码。由此产生的指标可以给样品分配质量分数,而不需要任何特定任务说明。在一系列实验中,我们通过在可控制的任务设置和对不可见数据中应用它来确认我们的测量标准是否合理。其他实验显示,在具有不同程度真实性的数据之间,该指标的可靠的内插能力。作为一个重要的应用,我们展示如何将地方现实性分数用于点云中的异常探测。