A recent line of work in the machine learning community addresses the problem of predicting high-dimensional spatiotemporal phenomena by leveraging specific tools from the differential equations theory. Following this direction, we propose in this article a novel and general paradigm for this task based on a resolution method for partial differential equations: the separation of variables. This inspiration allows us to introduce a dynamical interpretation of spatiotemporal disentanglement. It induces a principled model based on learning disentangled spatial and temporal representations of a phenomenon to accurately predict future observations. We experimentally demonstrate the performance and broad applicability of our method against prior state-of-the-art models on physical and synthetic video datasets.
翻译:机器学习界最近的一项工作是通过利用差异方程式理论中的具体工具来预测高维时空现象的问题。按照这个方向,我们在本条中提议以局部差异方程式的解析方法为基础,为这项任务提供一个新的和一般的范式:变量的分离。这种启发使我们能够对时空脱节进行动态解释。它引出一个基于学习一种现象的分解空间和时间表达来准确预测未来观测结果的原则模型。我们实验性地展示了我们的方法相对于先前最先进的物理和合成视频数据集模型的性能和广泛适用性。