This paper proposes FREEtree, a tree-based method for high dimensional longitudinal data with correlated features. Popular machine learning approaches, like Random Forests, commonly used for variable selection do not perform well when there are correlated features and do not account for data observed over time. FREEtree deals with longitudinal data by using a piecewise random effects model. It also exploits the network structure of the features by first clustering them using weighted correlation network analysis, namely WGCNA. It then conducts a screening step within each cluster of features and a selection step among the surviving features, that provides a relatively unbiased way to select features. By using dominant principle components as regression variables at each leaf and the original features as splitting variables at splitting nodes, FREEtree maintains its interpretability and improves its computational efficiency. The simulation results show that FREEtree outperforms other tree-based methods in terms of prediction accuracy, feature selection accuracy, as well as the ability to recover the underlying structure.


翻译:本文提出FREETree,这是具有相关特征的高维纵向数据的一种基于树的方法; 普通机器学习方法,如随机森林,通常用于变量选择,在有相关特征时效果不佳,而且没有说明一段时间内观察到的数据; FREETree 使用小片随机效应模型处理纵向数据,还利用特征的网络结构,首先利用加权相关网络分析(即WGCNA)对特征进行分组,然后在每个特征群中进行筛选,并在生存特征中选择一个步骤,为选择特征提供了相对公正的方式; 利用主导原则组成部分作为每个叶叶的回归变量,以及最初的特征作为分裂节点的分裂变量,FREETree保持其可解释性,并提高其计算效率; 模拟结果表明FREETree在预测准确性、特征选择准确性以及恢复基本结构的能力方面优于其他以树为基础的方法。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员