Use of continuous shrinkage priors -- with a "spike" near zero and heavy-tails towards infinity -- is an increasingly popular approach to induce sparsity in parameter estimates. When the parameters are only weakly identified by the likelihood, however, the posterior may end up with tails as heavy as the prior, jeopardizing robustness of inference. A natural solution is to "shrink the shoulders" of a shrinkage prior by lightening up its tails beyond a reasonable parameter range, yielding a regularized version of the prior. We develop a regularization approach which, unlike previous proposals, preserves computationally attractive structures of original shrinkage priors. We study theoretical properties of the Gibbs sampler on resulting posterior distributions, with emphasis on convergence rates of the P{\'o}lya-Gamma Gibbs sampler for sparse logistic regression. Our analysis shows that the proposed regularization leads to geometric ergodicity under a broad range of global-local shrinkage priors. Essentially, the only requirement is for the prior $\pi_{\rm local}$ on the local scale $\lambda$ to satisfy $\pi_{\rm local}(0) < \infty$. If $\pi_{\rm local}(\cdot)$ further satisfies $\lim_{\lambda \to 0} \pi_{\rm local}(\lambda) / \lambda^a < \infty$ for $a > 0$, as in the case of Bayesian bridge priors, we show the sampler to be uniformly ergodic.


翻译:使用连续缩缩前置( 使用接近零的“ spike”, 重尾尾尾尾尾朝无限性) 是一种越来越受欢迎的方法, 以诱发参数估计的偏差。 但是, 当参数仅被概率微弱地确定时, 后端可能最终出现像先前那样重的尾巴, 从而危及推断的稳健性。 一个自然的解决方案是, 将尾尾巴在合理的参数范围以外, 使尾巴“ 缩小” 的肩部, 产生先前的正常版本。 我们开发一种正规化方法, 与以往的提议不同, 保存原始缩缩缩前的具有计算吸引力的结构。 我们研究Gibbs取样器的理论属性, 重点是P@' o}lya- Gamma Gibs取样器的趋弱性回归率。 我们的分析表明, 拟议的正规化导致在全球- 本地缩缩缩缩前的广范围下, 基本上, 唯一需要的是当地 $\\ rm_ liver} $\ b demax as exx $___ liver_ liver_ exx_ ex

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月6日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月4日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员