We propose a novel method for sampling and optimization tasks based on a stochastic interacting particle system. We explain how this method can be used for the following two goals: (i) generating approximate samples from a given target distribution; (ii) optimizing a given objective function. The approach is derivative-free and affine invariant, and is therefore well-suited for solving inverse problems defined by complex forward models: (i) allows generation of samples from the Bayesian posterior and (ii) allows determination of the maximum a posteriori estimator. We investigate the properties of the proposed family of methods in terms of various parameter choices, both analytically and by means of numerical simulations. The analysis and numerical simulation establish that the method has potential for general purpose optimization tasks over Euclidean space; contraction properties of the algorithm are established under suitable conditions, and computational experiments demonstrate wide basins of attraction for various specific problems. The analysis and experiments also demonstrate the potential for the sampling methodology in regimes in which the target distribution is unimodal and close to Gaussian; indeed we prove that the method recovers a Laplace approximation to the measure in certain parametric regimes and provide numerical evidence that this Laplace approximation attracts a large set of initial conditions in a number of examples.


翻译:我们提出一种基于随机交互粒子系统进行取样和优化任务的新颖方法,我们解释如何将这种方法用于以下两个目标:(一)从特定的目标分布中产生大致的样本;(二)优化一个特定的目标功能;这种方法是无衍生物的,不折不扣的,因此完全适合解决复杂远方模型界定的反面问题:(一)允许从巴耶西亚后方生成样本,和(二)允许在目标分布不一和接近高卢的制度中确定最高后端估计器。我们从各种参数选择的角度,从分析角度和数字模拟的角度,对拟议方法组合的特性进行调查。分析和数字模拟表明,该方法具有在欧几里德空间上实现一般目的优化任务的潜力;算法的收缩特性是在适当条件下确定的,计算实验表明对各种具体问题具有广泛的吸引力。分析和实验还表明,在目标分布不单一和接近高比值的制度中,取样方法在各种参数选择方面具有特性。我们确实证明,该方法恢复了在欧几里德空间进行一般目的优化任务的可能性;在某种测测测度中,提供了某种测算方法的最初测算方法的精确度,从而提供了某种测测测测测测测测测度的数值的数值。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
3+阅读 · 2019年10月31日
Multiple Combined Constraints for Image Stitching
Arxiv
3+阅读 · 2018年9月18日
VIP会员
Top
微信扫码咨询专知VIP会员