The exploration of network structures through the lens of graph theory has become a cornerstone in understanding complex systems across diverse fields. Identifying densely connected subgraphs within larger networks is crucial for uncovering functional modules in biological systems, cohesive groups within social networks, and critical paths in technological infrastructures. The most representative approach, the SM algorithm, cannot locate subgraphs with large sizes, therefore cannot identify dense subgraphs; while the SA algorithm previously used by researchers combines simulated annealing and efficient moves for the Markov chain. However, the global optima cannot be guaranteed to be located by the simulated annealing methods including SA unless a logarithmic cooling schedule is used. To this end, our study introduces and evaluates the performance of the Simulated Annealing Algorithm (SAA), which combines simulated annealing with the stochastic approximation Monte Carlo algorithm. The performance of SAA against two other numerical algorithms-SM and SA, is examined in the context of identifying these critical subgraph structures using simulated graphs with embeded cliques. We have found that SAA outperforms both SA and SM by 1) the number of iterations to find the densest subgraph and 2) the percentage of time the algorithm is able to find a clique after 10,000 iterations, and 3) computation time. The promising result of the SAA algorithm could offer a robust tool for dissecting complex systems and potentially transforming our approach to solving problems in interdisciplinary fields.
翻译:暂无翻译