Probabilistic zero forcing is a coloring game played on a graph where the goal is to color every vertex blue starting with an initial blue vertex set. As long as the graph is connected, if at least one vertex is blue then eventually all of the vertices will be colored blue. The most studied parameter in probabilistic zero forcing is the expected propagation time starting from a given vertex of $G.$ In this paper we improve on upper bounds for the expected propagation time by Geneson and Hogben and Chan et al. in terms of a graph's order and radius. In particular, for a connected graph $G$ of order $n$ and radius $r,$ we prove the bound $\text{ept}(G) = O(r\log(n/r)).$ We also show using Doob's Optional Stopping Theorem and a combinatorial object known as a cornerstone that $\text{ept}(G) \le n/2 + O(\log n).$ Finally, we derive an explicit lower bound $\text{ept}(G)\ge \log_2 \log_2 n.$


翻译:概率零强迫是一个在图形上播放的彩色游戏, 目标是从最初的蓝色顶点设置开始, 给每个顶点上色, 从最初的蓝色顶点设置开始 。 只要图形连接, 如果至少一个顶点是蓝色的, 那么最终所有顶点都将是蓝色的。 概率零强迫中研究最多的参数是从给定的顶点G美元开始的预期传播时间。 本文中, 我们用图表的顺序和半径来改进Geneson和Hogben及Chan等人的预期传播时间的上界。 特别是, 对于一个连接的图表, $G$G$( 美元) 和半径为$r, 我们用 $\ text{ ept} (G) = O(r\log (n/r) 。 我们还用 Doob 的选项停止 Theorem 和一个被称作“ $text{ept} (G)\ n/2 + O(\log n) $, 我们用一个清晰的底框$\ text_\\\\\\\\ g} g) 显示一个基点的基点。 最后, 我们以明确的 $\\\\\\\\\\\\ g\\\\\\ g\ g\ g\ g\\\\\ g\\\\\\ g\ g\ g\ g\ g\\\\\\\\\ g\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员