Vision based control of Unmanned Aerial Vehicles (UAVs) has been adopted by a wide range of applications due to the availability of low-cost on-board sensors and computers. Tuning such systems to work properly requires extensive domain specific experience, which limits the growth of emerging applications. Moreover, obtaining performance limits of UAV based visual servoing is difficult due to the complexity of the models used. In this paper, we propose a novel noise tolerant approach for real-time identification and tuning of visual servoing systems, based on deep neural networks (DNN) classification of system response generated by the modified relay feedback test (MRFT). The proposed method, called DNN with noise protected MRFT (DNN-NP-MRFT), can be used with a multitude of vision sensors and estimation algorithms despite the high levels of sensor's noise. Response of DNN-NP-MRFT to noise perturbations is investigated and its effect on identification and tuning performance is analyzed. The proposed DNN-NP-MRFT is able to detect performance changes due to the use of high latency vision sensors, or due to the integration of inertial measurement unit (IMU) measurements in the UAV states estimation. Experimental identification closely matches simulation results, which can be used to explain system behaviour and predict the closed loop performance limits for a given hardware and software setup. We also demonstrate the ability of DNN-NP-MRFT tuned UAVs to reject external disturbances like wind, or human push and pull. Finally, we discuss the advantages of the proposed DNN-NP-MRFT visual servoing design approach compared with other approaches in literature.


翻译:由于提供了低成本的机载传感器和计算机,对无人驾驶飞行器(无人驾驶飞行器)进行了基于视觉的控制,这些应用范围很广,因此采用了基于视觉的控制; 使这些系统正常运行需要广泛的具体领域经验,这限制了新兴应用程序的增长; 此外,由于所用模型的复杂性,很难获得无人驾驶飞行器的视觉传感器的性能限制; 在本文中,我们提议根据经修改的中继反馈测试(MRFT)产生的系统反应的深层神经网络分类(DNNN),对实时识别和调控视觉传感器系统采用新的噪音容忍办法; 拟议的方法称为DNNNN(DN)系统,使用保护噪音的MRFT(DNNNN-NP-MRFT)系统,使用这种称为DNNNN(DNNNN)系统,使用这种方法可以使用多种视觉传感器和估算算法,尽管传感器的噪音噪音非常高; 调查DNNNP-NP-MF(D)对声音系统使用高清晰度测算法,也可以探测性性工作情况,在进行升级测测算; 将LAVAF-LAF-LA-L-LA-L-L-L-L-L-L-L-L-L-L-LL-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员