Spiking Neural Networks (SNNs) are biologically realistic and practically promising in low-power computation because of their event-driven mechanism. Usually, the training of SNNs suffers accuracy loss on various tasks, yielding an inferior performance compared with ANNs. A conversion scheme is proposed to obtain competitive accuracy by mapping trained ANNs' parameters to SNNs with the same structures. However, an enormous number of time steps are required for these converted SNNs, thus losing the energy-efficient benefit. Utilizing both the accuracy advantages of ANNs and the computing efficiency of SNNs, a novel SNN training framework is proposed, namely layer-wise ANN-to-SNN knowledge distillation (LaSNN). In order to achieve competitive accuracy and reduced inference latency, LaSNN transfers the learning from a well-trained ANN to a small SNN by distilling the knowledge other than converting the parameters of ANN. The information gap between heterogeneous ANN and SNN is bridged by introducing the attention scheme, the knowledge in an ANN is effectively compressed and then efficiently transferred by utilizing our layer-wise distillation paradigm. We conduct detailed experiments to demonstrate the effectiveness, efficacy, and scalability of LaSNN on three benchmark data sets (CIFAR-10, CIFAR-100, and Tiny ImageNet). We achieve competitive top-1 accuracy compared to ANNs and 20x faster inference than converted SNNs with similar performance. More importantly, LaSNN is dexterous and extensible that can be effortlessly developed for SNNs with different architectures/depths and input encoding methods, contributing to their potential development.


翻译:脉冲神经网络(SNNs)由于其事件驱动机制而在低功耗计算方面具有生物学上的现实性和实际的优势。通常,SNNs的训练在各种任务上都存在精度损失,与ANNs相比表现不佳。提出了一种转换方案,通过将训练过的ANNs参数映射到具有相同结构的SNNs上,获得具有竞争力的精度。然而,这些转换后的SNNs需要大量的时间步长,因此失去了节能的好处。利用ANNs的精度优势和SNNs的计算效率,提出了一种新的SNN训练框架,即逐层ANN到SNN知识蒸馏(LaSNN)。为了实现竞争性的精度和降低推理延迟,LaSNN通过蒸馏ANN其他知识而不是转换ANN参数,将学习从训练良好的ANN转移到小型SNN。通过引入注意力机制来弥合异质ANN和SNN之间的信息差距,使用我们的逐层蒸馏范式,可以有效地压缩ANN中的知识,然后进行高效的转移。我们通过在三个基准数据集(CIFAR-10,CIFAR-100和Tiny ImageNet)上进行详细实验来展示LaSNN的有效性,效率和可扩展性。与ANNs相比,我们实现了有竞争力的top-1精度,并且比性能相似的转换SNN的推理速度快20倍。更重要的是,LaSNN灵活和可扩展,可以轻松地针对具有不同体系结构/深度和输入编码方法的SNN进行开发,为其潜在发展做出贡献。

0
下载
关闭预览

相关内容

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
【NeurIPS 2022】扩散模型的深度平衡方法
专知会员服务
39+阅读 · 2022年11月5日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【CVPR2022】MSDN: 零样本学习的互语义蒸馏网络
专知会员服务
20+阅读 · 2022年3月8日
专知会员服务
19+阅读 · 2021年9月16日
[ICML-Google]先宽后窄:对深度薄网络的有效训练
专知会员服务
34+阅读 · 2020年7月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2020年9月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员