We study a new challenging problem of efficient deployment for diverse tasks with different resources, where the resource constraint and task of interest corresponding to a group of classes are dynamically specified at testing time. Previous NAS approaches seek to design architectures for all classes simultaneously, which may not be optimal for some individual tasks. A straightforward solution is to search an architecture from scratch for each deployment scenario, which however is computation-intensive and impractical. To address this, we present a novel and general framework, called Elastic Architecture Search (EAS), permitting instant specializations at runtime for diverse tasks with various resource constraints. To this end, we first propose to effectively train the over-parameterized network via a task dropout strategy to disentangle the tasks during training. In this way, the resulting model is robust to the subsequent task dropping at inference time. Based on the well-trained over-parameterized network, we then propose an efficient architecture generator to obtain optimal architectures within a single forward pass. Experiments on two image classification datasets show that EAS is able to find more compact networks with better performance while remarkably being orders of magnitude faster than state-of-the-art NAS methods. For example, our proposed EAS finds compact architectures within 0.1 second for 50 deployment scenarios.
翻译:我们研究一个具有挑战性的新问题,即为不同资源的不同任务高效部署,资源制约和与一组类别相关的兴趣任务在测试时动态地指定。以前的NAS方法试图同时为所有类别设计结构,这些结构可能不适合某些个别任务。一个直截了当的解决办法是为每个部署设想方案从零开始寻找一个架构,然而,这是计算密集和不切实际的。为了解决这个问题,我们提出了一个新颖和一般的框架,称为“弹性建筑搜索(EAS)”,允许在运行时为各种资源制约的不同任务进行即时专门化。为此,我们首先提议通过任务退出战略有效培训过度分化的网络,以在培训期间解析任务。这样,所产生的模型对于随后的任务在推论时间逐渐下降是强有力的。根据经过良好训练的超分度网络,我们然后提议一个高效的架构生成器,以便在一个前行通道上获得最佳的架构。两个图像分类数据集的实验表明,EAS能够找到更精细的网络,而其性则明显地在比州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州