Deepfakes are a form of synthetic image generation used to generate fake videos of individuals for malicious purposes. The resulting videos may be used to spread misinformation, reduce trust in media, or as a form of blackmail. These threats necessitate automated methods of deepfake video detection. This paper investigates whether temporal information can improve the deepfake detection performance of deep learning models. To investigate this, we propose a framework that classifies new and existing approaches by their defining characteristics. These are the types of feature extraction: automatic or manual, and the temporal relationship between frames: dependent or independent. We apply this framework to investigate the effect of temporal dependency on a model's deepfake detection performance. We find that temporal dependency produces a statistically significant (p < 0.05) increase in performance in classifying real images for the model using automatic feature selection, demonstrating that spatio-temporal information can increase the performance of deepfake video detection models.
翻译:深假是一种合成图像生成形式,用于为恶意目的制作假的个人视频。由此产生的视频可用于传播错误信息,减少对媒体的信任,或作为一种勒索形式。这些威胁要求采用自动的深假视频检测方法。本文调查时间信息能否改善深层学习模型的深假探测性能。为了调查这一点,我们提出了一个框架,根据特征特征的界定将新的和现有的方法分类。这些是特征提取类型:自动或人工,以及框架之间的时间关系:依赖性或独立性。我们应用这个框架来调查时间依赖对模型深假检测性工作的影响。我们发现,时间依赖性在使用自动特征选择对模型真实图像进行分类方面产生了具有统计意义的提高(p < 0.05),这表明时空信息可以提高深假视频检测模型的性能。