Statistical quality control methods are noteworthy to producing standard production in manufacturing processes. In this regard, there are many classical manners to control the process. Many of them have a global assumption around the distributions of the process data. They are supposed to be Normal, but it is clear that it is not always valid for all processes. Such control charts made some wrong decisions that waste funds. So, the main question while working with multivariate data set is how to find the multivariate distribution of the data set, which saves the original dependency between variables. To our knowledge, a copula function guarantees dependence on the result function. It is not enough when there is no other fundamental information about the statistical society, and we have just a data set. Therefore, we apply the maximum entropy concept to deal with this situation. In this paper, first of all, we get the joint distribution of a data set from a manufacturing process that needs to be in-control while running the production process. Then, we get an elliptical control limit via the maximum copula entropy. Finally, we represent a practical example using the method. Average run lengths are calculated for some means and shifts to show the ability of the maximum copula entropy. In the end, two practical data examples are presented, and the results of our method are compared with the traditional way based on Fisher distribution.
翻译:统计质量控制方法对于生产制造工艺中的标准生产具有值得注意的意义。 在这方面, 有很多典型的方法来控制该过程。 其中许多方法对于过程数据的分布具有全球性的假设。 它们应该是正常的, 但显然它并非始终适用于所有过程。 这些控制图表做出了一些错误的决定, 浪费了资金。 因此, 在与多变量数据集合作时, 主要问题是如何找到数据集的多变量分布, 从而保存变量之间的原始依赖性。 对我们的知识来说, 一个 Copula 函数可以保证对结果函数的依赖性。 当没有关于统计社会的其他基本信息时, 而我们只有一套数据集, 这还不够。 因此, 我们应用了最大的加密概念来应对这种情况。 在本文中, 首先, 我们从一个制造过程中获得一个需要控制的数据集的联合分发。 然后, 我们通过最大 Copula entropy 来获得一个螺旋控制限制。 最后, 我们用这个方法来代表一个实际的例子。 平均运行长度的长度是用来计算某种手段的, 并且用一种方法来显示我们最实际的方法来显示我们排序的方法。