This paper presents a concise introduction to a generic theoretical framework termed Bayesian Dynamic Ensemble of Multiple Models (BDEMM), which has been widely used for robust sequential online prediction with time series data. This framework has three major features: (1) it employs a model pool, rather than a single model, to capture possible statistical regularities underlying the data; (2) the model pool consists of multiple weighted candidate models, wherein the model weights are adapted online to capture possible temporal evolutions of the data; (3) the adaptation for the model weights follows Bayesian formalism. These features together define BDEMM. To make the introduction comprehensive, we describe BDEMM from five perspectives, namely the basic theories, its different forms of algorithmic implementations, its applications, its connections to related research, open resources for algorithm implementations, followed by a discussion of practical issues for applying it and some open problems that are worth further research.
翻译:本文件简要介绍了一个通用理论框架,称为Bayesian动态多模型(BDEMMM)综合体(BDEMM),该理论框架已被广泛用于有时间序列数据的可靠连续在线预测,它有三个主要特征:(1) 它使用一个模型库,而不是单一模型,以捕捉数据背后可能存在的统计规律;(2) 模型集合由多个加权候选模型组成,模型加权数在网上调整,以捕捉数据可能的时间演变;(3) 模型加权数在BDEMF之后的调整,这些特征共同定义了BDEMM。为了使导言具有全面性,我们从五个角度对BDEMM进行了描述,即基本理论、其不同的算法执行形式、其应用、其与相关研究的联系、用于算法执行的开放资源、随后讨论应用该模型的实际问题和一些值得进一步研究的公开问题。