We present ``The Concatenator,'' a real time system for audio-guided concatenative synthesis. Similarly to Driedger et al.'s ``musaicing'' (or ``audio mosaicing'') technique, we concatenate a set number of windows within a corpus of audio to re-create the harmonic and percussive aspects of a target audio stream. Unlike Driedger's NMF-based technique, however, we instead use an explicitly Bayesian point of view, where corpus window indices are hidden states and the target audio stream is an observation. We use a particle filter to infer the best hidden corpus states in real-time. Our transition model includes a tunable parameter to control the time-continuity of corpus grains, and our observation model allows users to prioritize how quickly windows change to match the target. Because the computational complexity of the system is independent of the corpus size, our system scales to corpora that are hours long, which is an important feature in the age of vast audio data collections. Within The Concatenator module itself, composers can vary grain length, fit to target, and pitch shift in real time while reacting to the sounds they hear, enabling them to rapidly iterate ideas. To conclude our work, we evaluate our system with extensive quantitative tests of the effects of parameters, as well as a qualitative evaluation with artistic insights. Based on the quality of the results, we believe the real-time capability unlocks new avenues for musical expression and control, suitable for live performance and modular synthesis integration, which furthermore represents an essential breakthrough in concatenative synthesis technology.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月17日
Arxiv
1+阅读 · 2024年12月17日
Arxiv
15+阅读 · 2021年11月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
1+阅读 · 2024年12月17日
Arxiv
1+阅读 · 2024年12月17日
Arxiv
15+阅读 · 2021年11月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员