Neyman(1923/1990) introduced the randomization model, which contains the notation of potential outcomes to define causal effects and a framework for large-sample inference based on the design of the experiment. However, the existing theory for this framework is far from complete especially when the number of treatment levels diverges and the group sizes vary a lot across treatment levels. We advance the literature by providing a unified discussion of statistical inference under the randomization model with general group sizes across treatment levels. We formulate the estimator in terms of a linear permutational statistic and use results based on Stein's method to derive various Berry--Esseen bounds on the linear and quadratic functions of the estimator. These new Berry--Esseen bounds serve as basis for design-based causal inference with possibly diverging treatment levels and diverging dimension of causal effects. We also fill an important gap by proposing novel variance estimators for experiments with possibly many treatment levels without replications. Equipped with the newly developed results, design-based causal inference in general settings becomes more convenient with stronger theoretical guarantees.
翻译:Neyman (1923/1990) 引入了随机化模型,其中载有根据实验设计确定因果关系的潜在结果的标记,以及根据实验设计得出的大样本推断框架,然而,这一框架的现有理论远非完全,特别是在处理水平不同和组规模不同处理水平差异很大的情况下。我们通过对随机化模型下的统计推论进行统一讨论,在各种处理水平上采用一般群体大小来推进文献;我们根据Stein的计算方法,用线性对线性对统计进行估计,并使用结果来得出关于估计者线性和二次函数的各种Berry-Esseen界限。这些新的“Berry-Es seeen 界限”作为基于设计、处理水平可能不同和因果影响不同层面的因果关系的基础。我们还填补了一个重要的空白,我们提出了新的差异估计,不作复制的处理水平可能很多的实验。 与新开发的结果相比,一般环境中基于设计设计的因果推断更加方便,理论保证更加有力。