This study examines the problem of determining whether to treat individuals based on observed covariates. The most common decision rule is the conditional empirical success (CES) rule proposed by Manski (2004), which assigns individuals to treatments that yield the best experimental outcomes conditional on observed covariates. By contrast, using shrinkage estimators, which shrink unbiased but noisy preliminary estimates toward the average of these estimates, is a common approach in statistical estimation problems because it is well-known that shrinkage estimators have smaller mean squared errors than unshrunk estimators. Inspired by this idea, we propose a computationally tractable shrinkage rule that selects the shrinkage factor by minimizing an upper bound of the maximum regret. Then, we compare the maximum regret of the proposed shrinkage rule with that of CES and pooling rules when the parameter space is correctly specified and misspecified. The theoretical and numerical results show that our shrinkage rule performs well in many cases when the parameter space is correctly specified. In addition, we show that the results are robust against the misspecification of the parameter space.
翻译:这项研究考察了确定是否根据观察到的共变情况对待个人的问题。 最常见的决定规则是曼斯基(2004年)提出的有条件的经验成功规则(CES),该规则将个人分配到以观察到的共变情况为条件而产生最佳实验结果的治疗中。 相比之下,使用缩微数估计器(缩微数估测器,这些估测器向这些估计数的平均值缩进不偏颇,但却吵闹的初步估计器),是统计估计问题的一个常见办法,因为众所周知,缩微数估计器的平均正方差比未缩小数估计器小。 受这一想法的启发,我们提出了一个可计算可移动的缩微数规则,通过尽量减少最大遗憾的上限来选择缩微数系数。 然后,我们将拟议的缩数规则的最大遗憾与CES规则和在参数空间得到正确指定和错误描述时汇集规则作比较。 理论和数字结果显示,我们的缩微数规则在许多情况下在参数空间得到正确指明时表现良好。 此外,我们表明,结果与参数空间的错误区分是可靠的。