Interpreting computations in the visual cortex as learning and inference in a generative model of the environment has received wide support both in neuroscience and cognitive science. However, hierarchical computations, a hallmark of visual cortical processing, has remained impervious for generative models because of a lack of adequate tools to address it. Here we capitalize on advances in Variational Autoencoders (VAEs) to investigate the early visual cortex with sparse coding hierarchical VAEs trained on natural images. We design alternative architectures that vary both in terms of the generative and the recognition components of the two latent-layer VAE. We show that representations similar to the one found in the primary and secondary visual cortices naturally emerge under mild inductive biases. Importantly, a nonlinear representation for texture-like patterns is a stable property of the high-level latent space resistant to the specific architecture of the VAE, reminiscent of the secondary visual cortex. We show that a neuroscience-inspired choice of the recognition model, which features a top-down processing component is critical for two signatures of computations with generative models: learning higher order moments of the posterior beyond the mean and image inpainting. Patterns in higher order response statistics provide inspirations for neuroscience to interpret response correlations and for machine learning to evaluate the learned representations through more detailed characterization of the posterior.


翻译:将视觉皮层的计算作为环境基因模型的学习和推断,在神经科学和认知科学方面都得到了广泛的支持;然而,由于缺乏适当的处理工具,作为视觉皮层处理标志的分级计算在视觉皮层处理的特征之一的分级计算对于基因模型来说仍然不易。在这里,我们利用Variational Autoencoders(VAEs)的进步来调查视觉皮层早期皮层,该图层的编码分级VAEs在自然图像方面受过培训。我们设计了其他结构,这些结构在神经皮层VAE的基因化和识别组成部分方面都各不相同。我们显示,与在初级和二级视觉皮层处理中发现的特征相似的分级计算,在温和的感偏向性偏见下自然地出现。重要的是,对像素状图案一样的不线性表示,这是对VAE的具体结构有抗力的高层潜在空间的稳定特性,这是二级视觉皮层图层图层图层图。我们显示,对识别模型的选择是神经科学的启发性选择,其中含有上下层处理部分的更高层和更高层的图层图层图层结构的图理学分析,对于进行两次的排序的模型的排序的计算,对于通过深判判判的顺序为进行更精确的排序提供。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年1月26日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员