Analyses of heterogeneous treatment effects (HTE) are common in applied causal inference research. However, when outcomes are latent variables assessed via psychometric instruments such as educational tests, standard methods ignore the potential HTE that may exist among the individual items of the outcome measure. Failing to account for "item-level" HTE (IL-HTE) can lead to both estimated standard errors that are too small and identification challenges in the estimation of treatment-by-covariate interaction effects. We demonstrate how Item Response Theory (IRT) models that estimate a treatment effect for each assessment item can both address these challenges and provide new insights into HTE generally. This study articulates the theoretical rationale for the IL-HTE model and demonstrates its practical value using data from 20 randomized controlled trials containing 2.3 million item responses in economics, education, and health research. Our results show that the IL-HTE model reveals item-level variation masked by average treatment effects, provides more accurate statistical inference, allows for estimates of the generalizability of causal effects, resolves identification problems in the estimation of interaction effects, and provides estimates of standardized treatment effect sizes corrected for attenuation due to measurement error.
翻译:暂无翻译