The use of machine learning (ML) techniques in the biomedical field has become increasingly important, particularly with the large amounts of data generated by the aftermath of the COVID-19 pandemic. However, due to the complex nature of biomedical datasets and the use of black-box ML models, a lack of trust and adoption by domain experts can arise. In response, interpretable ML (IML) approaches have been developed, but the curse of dimensionality in biomedical datasets can lead to model instability. This paper proposes a novel computational strategy for the stratification of biomedical problem datasets into k-fold cross-validation (CVs) and integrating domain knowledge interpretation techniques embedded into the current state-of-the-art IML frameworks. This approach can improve model stability, establish trust, and provide explanations for outcomes generated by trained IML models. Specifically, the model outcome, such as aggregated feature weight importance, can be linked to further domain knowledge interpretations using techniques like pathway functional enrichment, drug targeting, and repurposing databases. Additionally, involving end-users and clinicians in focus group discussions before and after the choice of IML framework can help guide testable hypotheses, improve performance metrics, and build trustworthy and usable IML solutions in the biomedical field. Overall, this study highlights the potential of combining advanced computational techniques with domain knowledge interpretation to enhance the effectiveness of IML solutions in the context of complex biomedical datasets.
翻译:生物医学领域机器学习技术的使用已变得日益重要,特别是由于COVID-19大流行后产生了大量数据,生物医学领域机器学习技术的使用已变得日益重要,特别是由于COVID-19大流行后产生的大量数据,然而,由于生物医学数据集的复杂性以及黑盒ML模型的使用,可能出现缺乏信任和域专家采用的情况;作为回应,开发了可解释的ML(IML)方法,但生物医学数据集的多元性诅咒可能导致模式不稳定;本文件提议了将生物医学问题数据集分解成千倍交叉校验(CVs)的复杂计算战略,并将域知识解释技术纳入目前最先进的IML框架,这种方法可以改善模型稳定性,建立信任,为经过训练的IML模型模型产生的结果提供解释说明;具体而言,模型结果,例如综合地权重重要性,可以与进一步的域知识解释相联系,使用诸如功能浓缩、毒品目标确定和重新配置数据库等技术;此外,让最终用户和临床医生参与重点小组讨论,在选择国际医学数据库最新版版的模型解释方法后,可以帮助将MLML数据库的先进方法和可测试的实地研究中,改进可以测试的模型的实地研究领域,从而改进国际MSRMLMLLLLLLLLL的先进解决办法的实地,可以改进。</s>