We consider (symmetric, non-degenerate) bilinear spaces over a finite field and investigate the properties of their $\ell$-complementary subspaces, i.e., the subspaces that intersect their dual in dimension $\ell$. This concept generalizes that of a totally isotropic subspace and, in the context of coding theory, specializes to the notions of self-orthogonal, self-dual and linear-complementary-dual (LCD) codes. In this paper, we focus on the enumerative and asymptotic combinatorics of all these objects, giving formulas for their numbers and describing their typical behavior (rather than the behavior of a single object). For example, we give a closed formula for the average weight distribution of an $\ell$-complementary code in the Hamming metric, generalizing a result by Pless and Sloane on the aggregate weight enumerator of binary self-dual codes. Our results also show that self-orthogonal codes, despite being very sparse in the set of codes of the same dimension over a large field, asymptotically behave quite similarly to a typical, not necessarily self-orthogonal, code. In particular, we prove that most self-orthogonal codes are MDS over a large field by computing the asymptotic proportion of the non-MDS ones for growing field size.


翻译:我们考虑( 对称、 非degenerate) 双线空间, 在一个有限的字段中, 并调查其 $\ ell$ 补充的子空间的属性, 也就是说, 在维度 $\ ell$ 中, 相交叉的子空间。 这个概念概括了完全等式的亚空间的属性, 在编码理论中, 专门研究自我垂直、 自定义和线性补充( LCD) 代码的概念 。 在本文中, 我们关注所有这些对象的数值和无线性相补充的子空间的属性, 也就是说, 给其数字公式并描述其典型行为( 而不是单个对象的行为 ) 。 例如, 我们给出了一个封闭公式, 用于一个纯度、 自定义和线性补充代码的平均重量分布, 将Pless 和 Sloane 对二进制自定义代码的总重度计算器( LCD) 的结果 。 我们的结果还显示, 尽管这些对象的自定义字段在非典型的数值中非常稀少, 其典型的自定义的字段, 其自定义的自定义字段, 的自定义的自定义字段, 的自定义的自定义, 的自定义的自定义字段, 的自定义的自定义的尺寸, 的自定义字段, 的自定义的自定义的自定义的自定义的自定义的尺寸, 的自定义的自定义的自定义的自定义的自定义的自定义的尺寸, 的自定义的尺寸, 的尺寸, 的尺寸, 的尺寸, 的尺寸, 的尺寸, 的形形形形形形形形形形形形体形形形形形形形形形形形形形形形形形形形形形形形形形体,,, 形形形形形形形形形体,,, 形形形形, 形, 形, 形形体,, 形体, 形形形形形形形形形形形, 形, 形, 形, 形形, 形体, 形, 形形形形形形形形形形形形形形形形形形形形形形形形形体, 形形形形形体, 形形形形

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
11+阅读 · 2018年5月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员