The coordinate-wise median is a classic and most well-studied strategy-proof mechanism in social choice and facility location scenarios. Surprisingly, there is no systematic study of its approximation ratio in $d$-dimensional spaces. The best known approximation guarantee in $d$-dimensional Euclidean space $\mathbb{L}_2(\mathbb{R}^d)$ is $\sqrt{d}$ via embedding $\mathbb{L}_1(\mathbb{R}^d)$ into $\mathbb{L}_2(\mathbb{R}^d)$ metric space, that only appeared in appendix of [Meir 2019].This upper bound is known to be tight in dimension $d=2$, but there are no known super constant lower bounds. Still, it seems that the community's belief about coordinate-wise median is on the side of $\Theta(\sqrt{d})$. E.g., a few recent papers on mechanism design with predictions [Agrawal, Balkanski, Gkatzelis, Ou, Tan 2022], [Christodoulou, Sgouritsa, Vlachos 2024], and [Barak, Gupta, Talgam-Cohen 2024] directly rely on the $\sqrt{d}$-approximation result.In this paper, we systematically study approximate efficiency of the coordinate-median in $\mathbb{L}_{q}(\mathbb{R}^d)$ spaces for any $\mathbb{L}_q$ norm with $q\in[1,\infty]$ and any dimension $d$. We derive a series of constant upper bounds $UB(q)$ independent of the dimension $d$. This series $UB(q)$ is growing with parameter $q$, but never exceeds the constant $UB(\infty)= 3$. Our bound $UB(2)=\sqrt{6\sqrt{3}-8}<1.55$ for $\mathbb{L}_2$ norm is only slightly worse than the tight approximation guarantee of $\sqrt{2}>1.41$ in dimension $d=2$. Furthermore, we show that our upper bounds are essentially tight by giving almost matching lower bounds $LB(q,d)=UB(q)\cdot(1-O(1/d))$ for any dimension $d$ with $LB(q,d)=UB(q)$ when $d\to\infty$. We also extend our analysis to the generalized median mechanism in [Agrawal, Balkanski, Gkatzelis, Ou, Tan 2022] for $\mathbb{L}_2(\mathbb{R}^2)$ space to arbitrary dimensions $d$ with similar results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
专知会员服务
33+阅读 · 2021年3月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
专知会员服务
33+阅读 · 2021年3月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员