Electronic Health Records (EHR) has revolutionized healthcare data management and prediction in the field of AI and machine learning. Accurate predictions of diagnosis and medications significantly mitigate health risks and provide guidance for preventive care. However, EHR driven models often have limited scope on understanding medical-domain knowledge and mostly rely on simple-and-sole ontologies. In addition, due to the missing features and incomplete disease coverage of EHR, most studies only focus on basic analysis on conditions and medication. We propose DualMAR, a framework that enhances EHR prediction tasks through both individual observation data and public knowledge bases. First, we construct a bi-hierarchical Diagnosis Knowledge Graph (KG) using verified public clinical ontologies and augment this KG via Large Language Models (LLMs); Second, we design a new proxy-task learning on lab results in EHR for pretraining, which further enhance KG representation and patient embeddings. By retrieving radial and angular coordinates upon polar space, DualMAR enables accurate predictions based on rich hierarchical and semantic embeddings from KG. Experiments also demonstrate that DualMAR outperforms state-of-the-art models, validating its effectiveness in EHR prediction and KG integration in medical domains.
翻译:暂无翻译