Motivated by applications in machine learning, we present a quantum algorithm for Gibbs sampling from continuous real-valued functions defined on high dimensional tori. We show that these families of functions satisfy a Poincar\'e inequality. We then use the techniques for solving linear systems and partial differential equations to design an algorithm that performs zeroeth order queries to a quantum oracle computing the energy function to return samples from its Gibbs distribution. We then analyze the query and gate complexity of our algorithm and prove that the algorithm has a polylogarithmic dependence on approximation error (in total variation distance) and a polynomial dependence on the number of variables, although it suffers from an exponentially poor dependence on temperature. To this end, we develop provably efficient quantum algorithms for manipulating real analytic periodic functions.
翻译:在机器学习应用的推动下,我们提出了一个Gibbs样本量子算法,用于从高维维上定义的连续真实价值函数取样。我们展示出这些功能组满足Poincar\'e的不平等性。我们然后使用解决线性系统和部分差异方程式的技术来设计一种算法,对计算Gibbs分布的能量函数返回样本的量子或轴进行零顺序查询。我们然后分析我们的算法的查询和门复杂性,并证明该算法对近似误差(完全变异距离)和多数值对变量数的依赖性,尽管对温度的依赖性极差。为此,我们开发了可想象有效的量子算法,用于操纵真实的解析周期函数。