Monocular 6D pose estimation is a fundamental task in computer vision. Existing works often adopt a two-stage pipeline by establishing correspondences and utilizing a RANSAC algorithm to calculate 6 degrees-of-freedom (6DoF) pose. Recent works try to integrate differentiable RANSAC algorithms to achieve an end-to-end 6D pose estimation. However, most of them hardly consider the geometric features in 3D space, and ignore the topology cues when performing differentiable RANSAC algorithms. To this end, we proposed a Depth-Guided Edge Convolutional Network (DGECN) for 6D pose estimation task. We have made efforts from the following three aspects: 1) We take advantages ofestimated depth information to guide both the correspondences-extraction process and the cascaded differentiable RANSAC algorithm with geometric information. 2)We leverage the uncertainty ofthe estimated depth map to improve accuracy and robustness ofthe output 6D pose. 3) We propose a differentiable Perspective-n-Point(PnP) algorithm via edge convolution to explore the topology relations between 2D-3D correspondences. Experiments demonstrate that our proposed network outperforms current works on both effectiveness and efficiency.
翻译:计算机视觉中的一项基本任务。 现有的工程往往通过建立通信和使用RANSAC算法来计算6度自由(6DoF)而采用两阶段管道。 最近的工程试图将不同的RANSAC算法结合起来, 以实现终端到终端的 6D 构成估计。 但是, 大部分工程几乎不考虑3D 空间的几何特征, 并且在执行不同的RANSAC 算法时忽略了表层线索。 为此, 我们建议通过边缘同级推算, 进行深度引导电动网络(DGECN) 的算法, 以探索2D-3D 对应和当前效率的顶层关系。 我们利用估计深度图的不确定性来提高输出6D 6D 的精确度和稳健性。 我们建议通过边缘同级推算出一个不同的观点- 点(PnP) 算法, 以探索2D-3D 对应和当前通信效率的顶层关系。 实验显示我们提议的网络效率。