A novel 3D point cloud learning model for deep LiDAR odometry, named PWCLO-Net, using hierarchical embedding mask optimization is proposed in this paper. In this model, the Pyramid, Warping, and Cost volume (PWC) structure for the LiDAR Odometry task is built to hierarchically refine the estimated pose in a coarse-to-fine approach. An attentive cost volume is built to associate two point clouds and obtain the embedding motion information. Then, a novel trainable embedding mask is proposed to weight the cost volume of all points to the overall pose information and filter outlier points. The estimated current pose is used to warp the first point cloud to bridge the distance to the second point cloud, and then the cost volume of the residual motion is built. At the same time, the embedding mask is optimized hierarchically from coarse to fine to obtain more accurate filtering information for pose refinement. The pose warp-refinement process is repeatedly used to make the pose estimation more robust for outliers. The superior performance and effectiveness of our LiDAR odometry model are demonstrated on the KITTI odometry dataset. Our method outperforms all recent learning-based methods and outperforms the geometry-based approach, LOAM with mapping optimization, on most sequences of the KITTI odometry dataset.


翻译:本文中建议使用等级嵌入掩码优化, 用于深 LiDAR odology 的新型 3D 点云学习模型, 名为 PWCLO- Net, 使用等级嵌入掩码优化。 在这个模型中, 为 LiDAR Odograph 任务构建了金字塔、 扭曲和成本体积结构( PWCWC), 以便以粗略方式从等级上完善估计的构成。 建造了一个备受关注的成本量, 将两点云联系起来, 并获得嵌入运动信息 。 然后, 提出了一个新的可训练嵌入遮罩, 以将所有点的成本量与总体构成信息和过滤外端点加权。 估计的当前布局将用来将第一点云扭曲, 将距离连接到第二点云层云的距离, 并随后构建剩余运动的成本量结构。 与此同时, 嵌入的遮固面面面面面罩将从粗糙到精度, 以更精确的过滤信息来进行精细的过滤。 设置调过程被反复用来使外观的外观的外观。 我们的LDARIT OS测量模型模型模型模型模型模型模型模型模型的高级的高级和最高级方法将显示为外观。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
专知会员服务
44+阅读 · 2020年10月31日
ECCV 2020 五项大奖出炉!普林斯顿邓嘉获最佳论文奖
专知会员服务
17+阅读 · 2020年8月25日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
专知会员服务
109+阅读 · 2020年3月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
9+阅读 · 2019年4月19日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关VIP内容
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
专知会员服务
44+阅读 · 2020年10月31日
ECCV 2020 五项大奖出炉!普林斯顿邓嘉获最佳论文奖
专知会员服务
17+阅读 · 2020年8月25日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
专知会员服务
109+阅读 · 2020年3月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员