A novel 3D point cloud learning model for deep LiDAR odometry, named PWCLO-Net, using hierarchical embedding mask optimization is proposed in this paper. In this model, the Pyramid, Warping, and Cost volume (PWC) structure for the LiDAR Odometry task is built to hierarchically refine the estimated pose in a coarse-to-fine approach. An attentive cost volume is built to associate two point clouds and obtain the embedding motion information. Then, a novel trainable embedding mask is proposed to weight the cost volume of all points to the overall pose information and filter outlier points. The estimated current pose is used to warp the first point cloud to bridge the distance to the second point cloud, and then the cost volume of the residual motion is built. At the same time, the embedding mask is optimized hierarchically from coarse to fine to obtain more accurate filtering information for pose refinement. The pose warp-refinement process is repeatedly used to make the pose estimation more robust for outliers. The superior performance and effectiveness of our LiDAR odometry model are demonstrated on the KITTI odometry dataset. Our method outperforms all recent learning-based methods and outperforms the geometry-based approach, LOAM with mapping optimization, on most sequences of the KITTI odometry dataset.
翻译:本文中建议使用等级嵌入掩码优化, 用于深 LiDAR odology 的新型 3D 点云学习模型, 名为 PWCLO- Net, 使用等级嵌入掩码优化。 在这个模型中, 为 LiDAR Odograph 任务构建了金字塔、 扭曲和成本体积结构( PWCWC), 以便以粗略方式从等级上完善估计的构成。 建造了一个备受关注的成本量, 将两点云联系起来, 并获得嵌入运动信息 。 然后, 提出了一个新的可训练嵌入遮罩, 以将所有点的成本量与总体构成信息和过滤外端点加权。 估计的当前布局将用来将第一点云扭曲, 将距离连接到第二点云层云的距离, 并随后构建剩余运动的成本量结构。 与此同时, 嵌入的遮固面面面面面罩将从粗糙到精度, 以更精确的过滤信息来进行精细的过滤。 设置调过程被反复用来使外观的外观的外观。 我们的LDARIT OS测量模型模型模型模型模型模型模型模型模型的高级的高级和最高级方法将显示为外观。