In this study, we propose a new index for measuring excellence in science which is based on collaborations (co-authorship distances) in science. The index is based on the Erd\H{o}s number - a number that was introduced several years ago. We propose to focus with the new index on laureates of prestigious prizes in a certain field and to measure co-authorship distances between the laureates and other scientists. To exemplify and explain our proposal, we computed the proposed index in the field of quantitative science studies (PWIPM). The Derek de Solla Price Memorial Award (Price Medal, PM) is awarded to outstanding scientists in the field. We tested the convergent validity of the PWIPM. We were interested whether the indicator is related to an established bibliometric indicator: P(top 10%). The results show that the coefficients for the correlation between PWIPM and P(top 10%) are high (in cases when a sufficient number of papers have been considered for a reliable assessment of performance). Therefore, measured by an established indicator for research excellence, the new PWI indicator seems to be convergently valid and, therefore, might be a possible alternative for established (bibliometric) indicators - with a focus on prizes.


翻译:在本研究中,我们提出了一种新的衡量科学卓越性的指数,该指数基于科学合作(共同作者距离)而建立。我们的指数基于 Erd\H{o}s 数,这个数在几年前就被引入了。我们建议用新的指数来关注一定领域中著名奖项的获得者,并测量这些获奖者与其他科学家之间的共同作者距离。为了阐述和解释我们的提议,我们计算了定量科学研究领域中的获奖者指数(PWIPM)。Derek de Solla Price Memorial Award(Price Medal,PM)是该领域杰出科学家所颁发的著名奖项。我们测试了 PWIPM 的收敛效度。我们感兴趣的是,这个指标是否与现有的文献计量指标:P(top 10%)有关。结果表明,PWI 指数与 P(top 10%)之间的相关性系数很高(在考虑足够数量的论文以可靠评估绩效的情况下)。因此,从评估研究卓越的已有指标衡量来看,新的 PWI 指标似乎是收敛有效的,因此可能成为已有指标的一种可能的替代方案——重点放在奖项方面。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AAAI 2019最佳论文公布,CMU、斯坦福、MIT上榜
新智元
12+阅读 · 2019年1月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员