Existing face stylization methods always acquire the presence of the target (style) domain during the translation process, which violates privacy regulations and limits their applicability in real-world systems. To address this issue, we propose a new method called MODel-drIven Face stYlization (MODIFY), which relies on the generative model to bypass the dependence of the target images. Briefly, MODIFY first trains a generative model in the target domain and then translates a source input to the target domain via the provided style model. To preserve the multimodal style information, MODIFY further introduces an additional remapping network, mapping a known continuous distribution into the encoder's embedding space. During translation in the source domain, MODIFY fine-tunes the encoder module within the target style-persevering model to capture the content of the source input as precisely as possible. Our method is extremely simple and satisfies versatile training modes for face stylization. Experimental results on several different datasets validate the effectiveness of MODIFY for unsupervised face stylization.
翻译:现有的面部风格化方法在翻译过程中始终需要目标(风格)域的存在,这违反了隐私条例,并限制了它们在实际应用系统中的适用性。为解决这个问题,我们提出了一种新方法,名为基于模型的面部风格化(MODIFY),它依靠生成模型来规避对目标图像的依赖性。简而言之,MODIFY首先在目标域训练生成模型,然后通过提供的风格模型将源输入转换为目标域。为了保留多模态的风格信息,MODIFY还引入了额外的重映射网络,将已知连续分布映射到编码器嵌入空间中。在源域中进行翻译时,MODIFY通过目标保存模型中的编码器模块进行微调,以尽可能精确地捕捉源输入的内容。我们的方法非常简单,满足面部风格化的各种训练模式。多个不同数据集上的实验结果验证了 MODIFY 对于无监督面部风格化的有效性。