Place Recognition (PR) enables the estimation of a globally consistent map and trajectory by providing non-local constraints in Simultaneous Localisation and Mapping (SLAM). This paper presents Locus, a novel place recognition method using 3D LiDAR point clouds in large-scale environments. We propose a novel method for extracting and encoding topological and temporal information related to components in a scene and demonstrate how the inclusion of this auxiliary information in place description leads to more robust and discriminative scene representations. Second-order pooling along with a non-linear transform is used to aggregate these multi-level features to generate a fixed-length global descriptor, which is invariant to the permutation of input features. The proposed method outperforms state-of-the-art methods on the KITTI dataset. Furthermore, Locus is demonstrated to be robust across several challenging situations such as occlusions and viewpoint changes.
翻译:通过提供同步本地化和绘图(SLAM)中的非本地限制,确认位置(PR)能够估算出全球一致的地图和轨迹。本文展示了Locus,这是一个使用大型环境中3D LiDAR点云的新地方识别方法。我们提出了一种新颖的方法,用于提取和编码与场景各组成部分有关的表层和时间信息,并展示将这种辅助信息纳入现场描述如何导致更有力和更具歧视性的场景展示。二级集成与非线性转换一起,将这些多层特征汇总起来,以产生固定长度的全球描述符,这种描述符与输入特征的变异性是不可改变的。拟议方法在KITTI数据集中超越了最新设计方法。此外,Locus被证明在封闭和观点变化等若干具有挑战性的情况中是稳健的。