In this paper we find an integer $h=h(n)$ such that the minimum number of variables of a first order sentence that distinguishes between two independent uniformly distributed random graphs of size $n$ with the asymptotically largest possible probability $\frac{1}{4}-o(1)$ belongs to $\{h,h+1,h+2,h+3\}$. We also prove that the minimum (random) $k$ such that two independent random graphs are distinguishable by a first order sentence with $k$ variables belongs to $\{h,h+1,h+2\}$ with probability $1-o(1)$.
翻译:在本文中,我们发现一个整数$h=h(n),这样一阶句的最低变数就区分了两个独立的单一分布的随机图,其大小为$n, 其概率可能微小, 概率为$frac{1 ⁇ 4}-o(1)$h,h+1,h+2,h+3$。我们还证明,最低(随机)$k(kon),因此,两个独立的随机图可以通过含有$k$变量的一阶段变数区分开来,其值为$h,h+1,h+2$, 概率为$1-o(1)$。