Renormalized homotopy continuation on toric varieties is introduced as a tool for solving sparse systems of polynomial equations, or sparse systems of exponential sums. The cost of continuation depends on a renormalized condition length, defined as a line integral of the condition number along all the lifted renormalized paths. The theory developed in this paper leads to a continuation algorithm tracking all the solutions between two generic systems with the same structure. The algorithm is randomized, in the sense that it follows a random path between the two systems. The probability of success is one. In order to produce an expected cost bound, several invariants depending solely of the supports of the equations are introduced. For instance, the mixed area is a quermassintegral that generalizes surface area in the same way that mixed volume generalizes ordinary volume. The facet gap measures for each direction in the 0-fan, how close is the supporting hyperplane to the nearest vertex. Once the supports are fixed, the expected cost depends on the input coefficients solely through two invariants: the renormalized toric condition number and the imbalance of the absolute values of the coefficients. This leads to a non-uniform complexity bound for polynomial solving in terms of those two invariants. Up to logarithms, the expected cost is quadratic in the first invariant and linear in the last one.
翻译:将复原的同质继续原异品种作为解决稀少的多元方程式系统或稀少的指数数体系的工具。 继续的成本取决于重新整顿的条件长度, 定义为所有已取消的重新整整顿路径上条件号的直线组成部分。 本文中开发的理论导致继续使用算法, 跟踪结构相同的两种通用系统之间的所有解决方案。 算法是随机的, 其沿两个系统之间的随机路径运行。 成功的可能性是一。 为了产生预期的成本约束, 引入了数种仅取决于方程式支持的变异体。 例如, 混合区域是一个正正正方形区域, 以混合体一般体积的混合方式将表面区域普遍化。 对 0 方形中每个方向的表面差距测量, 支持性高平面与最接近的脊椎之间的距离。 支持一旦固定, 预期成本取决于仅仅通过两个变异体的输入系数: 重新整正态状态数数数数, 以及两个正方形数的绝对值的平面值之间的不平衡值, 直至两个正方形数的正方形的正方形的正方形的正方形值。 。 将两个正方形的正方形的正方形的正方形的正方形的正方形的正方值的正方值的正值的正方值的正值的正方形的正方值的正方值的正方值的正方值的正方值的正方值的正值的正方值的正方值的正值的正方值的正值的正方值的正值的正值的正值的正方值的正方值的正方值的正方值。