Suppose $A \in \mathbb{R}^{n \times n}$ is invertible and we are looking for the solution of $Ax = b$. Given an initial guess $x_1 \in \mathbb{R}$, we show that by reflecting through hyperplanes generated by the rows of $A$, we can generate an infinite sequence $(x_k)_{k=1}^{\infty}$ such that all elements have the same distance to the solution, i.e. $\|x_k - x\| = \|x_1 - x\|$. If the hyperplanes are chosen at random, averages over the sequence converge and $$ \mathbb{E} \left\| x - \frac{1}{m} \sum_{k=1}^{m}{ x_k} \right\| \leq \frac{1 + \|A\|_F \|A^{-1}\|}{\sqrt{m}} \cdot\|x-x_1\|.$$ The bound does not depend on the dimension of the matrix. This introduces a purely geometric way of attacking the problem: are there fast ways of estimating the location of the center of a sphere from knowing many points on the sphere? Our convergence rate (coinciding with that of the Random Kaczmarz method) comes from averaging, can one do better?


翻译:假设$A\ in\ mathbb{R ⁇ n\ times n} 美元是不可忽略的, 我们正在寻找 $Ax = b$ 的解决方案。 根据最初的猜测 $x_ 1\ in\ mathbb{R} 美元, 我们显示, 通过由 $A 生成的超高平面, 我们可以通过 $A 生成一个无限的序列$( x_ k)\\ k= 1\\\\ incnfty} 美元, 这样所有元素都具有与解决方案相同的距离, 即 $x_ k - x * * * * * * * * * x_ k - x * * = * x_ x_ x_ x\ x $ 。 如果高平面是随机选择的, 则在序列趋同和 $\ mall x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
50+阅读 · 2020年12月14日
报告 | 2020中国5G经济报告,100页pdf
专知会员服务
97+阅读 · 2019年12月29日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Arxiv
0+阅读 · 2021年5月23日
Arxiv
0+阅读 · 2021年5月22日
Arxiv
0+阅读 · 2021年5月21日
Arxiv
0+阅读 · 2021年5月20日
Arxiv
0+阅读 · 2021年5月20日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
50+阅读 · 2020年12月14日
报告 | 2020中国5G经济报告,100页pdf
专知会员服务
97+阅读 · 2019年12月29日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Top
微信扫码咨询专知VIP会员