In this paper, we consider stochastic second-order methods for minimizing a finite summation of nonconvex functions. One important key is to find an ingenious but cheap scheme to incorporate local curvature information. Since the true Hessian matrix is often a combination of a cheap part and an expensive part, we propose a structured stochastic quasi-Newton method by using partial Hessian information as much as possible. By further exploiting either the low-rank structure or the kronecker-product properties of the quasi-Newton approximations, the computation of the quasi-Newton direction is affordable. Global convergence to stationary point and local superlinear convergence rate are established under some mild assumptions. Numerical results on logistic regression, deep autoencoder networks and deep convolutional neural networks show that our proposed method is quite competitive to the state-of-the-art methods.


翻译:在本文中,我们考虑了将非康威功能的有限相加最小化的第二顺序方法。 重要的关键之一是找到一个巧妙但廉价的办法, 以纳入本地曲线信息。 由于真正的赫森矩阵往往是廉价部分和昂贵部分的组合, 我们建议尽可能使用部分赫森信息, 以结构化的随机准牛顿方法。 通过进一步利用准纽顿近似的低级结构或克朗产品特性, 计算准纽顿方向是可承受的。 全球与固定点和地方超线性趋同率是在一些温和假设下建立的。 物流回归的数值结果、 深度自动电解网络和深共振神经网络表明,我们提出的方法与最新方法相当具有竞争力。

0
下载
关闭预览

相关内容

拟牛顿法(Quasi-Newton Methods)是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W. C. Davidon所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。
专知会员服务
50+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2020年10月7日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员