We argue that an excess in entanglement between the visible and hidden units in a Quantum Neural Network can hinder learning. In particular, we show that quantum neural networks that satisfy a volume-law in the entanglement entropy will give rise to models not suitable for learning with high probability. Using arguments from quantum thermodynamics, we then show that this volume law is typical and that there exists a barren plateau in the optimization landscape due to entanglement. More precisely, we show that for any bounded objective function on the visible layers, the Lipshitz constants of the expectation value of that objective function will scale inversely with the dimension of the hidden-subsystem with high probability. We show how this can cause both gradient descent and gradient-free methods to fail. We note that similar problems can happen with quantum Boltzmann machines, although stronger assumptions on the coupling between the hidden/visible subspaces are necessary. We highlight how pretraining such generative models may provide a way to navigate these barren plateaus.
翻译:我们争论说,在量子神经网络中,可见和隐藏的单元之间的纠缠过多会妨碍学习。特别是,我们表明,满足纠缠酶中卷积法的量子神经网络将产生不适于高概率学习的模式。我们利用量子热动力学的参数,然后表明这种量法是典型的,由于缠绕,在优化景观中存在着不毛的高原。更确切地说,我们表明,对于可见层的任何受约束的目标功能而言,该目标函数的预期值的利普什奇常数将极有可能与隐藏子系统的维度反向扩大。我们表明这如何造成梯度下降和无梯度方法的失败。我们注意到,量子波尔茨曼机器可能发生类似的问题,尽管在隐藏/可见的子空间之间发生合并时需要更强烈的假设。我们强调,对于这种基因模型的预先训练可能提供一条通向这些贫性高原的路径。