The Gomory-Hu tree, or a cut tree, is a classic data structure that stores minimum $s$-$t$ cuts of an undirected weighted graph for all pairs of nodes $(s,t)$. We propose a new approach for computing the cut tree based on a reduction to the problem that we call OrderedCuts. Given a sequence of nodes $s,v_1,\ldots,v_\ell$, its goal is to compute minimum $\{s,v_1,\ldots,v_{i-1}\}$-$v_i$ cuts for all $i\in[\ell]$. We show that the cut tree can be computed by $\tilde O(1)$ calls to OrderedCuts. We also establish new results for OrderedCuts that may be of independent interest. First, we prove that all $\ell$ cuts can be stored compactly with $O(n)$ space in a data structure that we call an OC tree. We define a weaker version of this structure that we call depth-1 OC tree, and show that it is sufficient for constructing the cut tree. Second, we prove results that allow divide-and-conquer algorithms for computing OC tree. We argue that the existence of divide-and-conquer algorithms makes our new approach a good candidate for a practical implementation.
翻译:Gomory-Hu树,或一棵剪切的树,是一个典型的数据结构,它储存所有节点的无方向加权图表$$-t$的最小值为美元-美元。我们提出一种新的方法,在减少我们称之为有秩序餐饮的问题的基础上计算剪切树。根据一个节点$,v_1,\ldots,v ⁇ ell$的序列,它的目标是计算所有节点的最小值$,v_1,\ldots,v ⁇ i-1 ⁇ _$-v_i_i$_i$_i$_i$$$$。我们确定这个结构的较弱版本,我们称之为深度-OC-in[\ell]$-美元。我们显示剪切树可以用$\tilde O(1)$到有秩序的电话来计算。我们还为可能具有独立兴趣的有秩序餐饮品的有秩序餐饮的餐饮树制定了新的结果。首先,我们证明所有每餐饮量的餐饮空间可以用$(n)来压缩我们称为“O-n)ocreal oal latical-comal requial requial for we cal decual for we cal subal dequiducal lacuducuducult我们要求一个好的树。